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ABSTRACT
Motivation: Inferring networks of proteins from biological data is
a central issue of computational biology. Most network inference
methods, including Bayesian networks, take unsupervised approaches
in which the network is totally unknown in the beginning, and all the
edges have to be predicted. A more realistic supervised framework,
proposed recently, assumes that a substantial part of the network is
known. We propose a new kernel-based method for supervised graph
inference based on multiple types of biological datasets such as gene
expression, phylogenetic profiles and amino acid sequences. Notably,
our method assigns a weight to each type of dataset and thereby
selects informative ones. Data selection is useful for reducing data
collection costs. For example, when a similar network inference prob-
lem must be solved for other organisms, the dataset excluded by our
algorithm need not be collected.
Results: First, we formulate supervised network inference as a
kernel matrix completion problem, where the inference of edges boils
down to estimation of missing entries of a kernel matrix. Then, an
expectation–maximization algorithm is proposed to simultaneously
infer the missing entries of the kernel matrix and the weights of
multiple datasets. By introducing the weights, we can integrate
multiple datasets selectively and thereby exclude irrelevant and noisy
datasets. Our approach is favorably tested in two biological networks:
a metabolic network and a protein interaction network.
Availability: Software is available on request.
Contact: kato-tsuyoshi@aist.go.jp
Supplementary information: A supplementary report including
mathematical details is available at www.cbrc.jp/∼kato/faem/faem.html

1 INTRODUCTION
Recent advances in generating comprehensive assays have clarified
that most biological functions are realized through the cooperation
of multiple proteins. To understand complicated relations of many
proteins, it is handy to use a network representation (i.e. protein net-
work) in which a protein corresponds to a node and the relation of
two proteins is described as an edge. There are several types of net-
works whose edges have different meanings. This paper specifically
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Training Network

Extra Proteins

Fig. 1. The supervised network prediction; for a substantial number of pro-
teins, the network is assumed to be known (training network). Our task is to
identify the hidden edges involving extra proteins (shown as broken lines)
using multiple datasets, such as the gene expression data.

addresses metabolic networks (Kanehisa et al., 2004) and networks
of physical interactions (von Mering et al., 2002).

Several statistical methods have been proposed to infer such net-
works, but most of them are unsupervised: they estimate the edges
solely from a dataset [Friedman (2004); Saito et al. (2003)]. In con-
trast, the supervised approach (Yamanishi et al., 2004) assumes that
a part of the network is known. When the network has � proteins,
the presence or absence of edges is completely known for the first
n < � proteins (Fig. 1). This assumption is becoming more realistic
as high confidence networks have become increasingly available (von
Mering et al., 2002). The remaining m := � − n proteins are extra
proteins. Our task is to predict the edges including extra proteins
from datasets.

Properties of proteins are characterized from many aspects. It is
for this reason, that proteins are usually represented by multiple
types of data such as gene expression, amino acid sequences and
phylogenetic profiles. It is essential to exploit all available data-
sets to achieve reliable prediction of networks. Nevertheless, to
control data collection costs, it is also important to select inform-
ative data types. Once informative data types are identified, one
need not collect unnecessary dataset when solving similar net-
work inference problem for other sets of proteins or for other
organisms.

This paper presents a new network inference method with auto-
matic data selection. Following Yamanishi et al. (2004), proteins are
represented as a ‘kernel matrix’ whose (i, j) element describes a sim-
ilarity between two proteins i and j . With a kernel matrix, one can
construct a network from the individual values. Edges are assigned
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Fig. 2. Illustration of kernel matrix completion. Kernel values for the first
n proteins are derived from the training network. Our task is to estim-
ate the missing parts of the matrix using multiple types of data related to
proteins.

to the protein pairs whose kernel values are above a certain threshold.
One can control the number of edges by changing the threshold. The
network inference problem is a huge combinatorial problem because
many 0/1 binary variables must be determined to describe the edges.
The kernel matrix representation lends reasonable relaxation to this
difficult problem. Subsequently, the network inference problem boils
down to the problem of inferring kernel values (i.e. similarity) among
the proteins.

Our method is based on kernel matrix completion (Tsuda et al.,
2003), which works as follows. First, the kernel matrix among
n proteins in the training network is obtained by diffusion ker-
nels (Kondor and Lafferty, 2002). We call this the incomplete kernel
matrix because kernel values involving m extra proteins are unknown
(Fig. 2). Next, each biological dataset is converted to a kernel matrix.
Typically, we have nK(≥2) different biological datasets, which we
call auxiliary data. The RBF kernel and the linear kernel are com-
mon choices for vectors such as gene expressions. For sequences,
trees or graphs, one can use kernel derivation methods for structured
objects (Schölkopf et al., 2004). To predict the edges involving extra
nodes, we must estimate the missing parts of the incomplete ker-
nel matrix using a number of kernel matrices derived from auxiliary
data (Fig. 2). We then introduce a weight parameter to each kernel
matrix to select informative datasets. Consequently, our expectation–
maximization (EM) algorithm estimates the missing part and the
weights at the same time. The auxiliary matrices assigned with low
weights are considered as unnecessary. In a related work, Lanckriet
et al. (2004) addressed a similar kernel selection problem for pro-
tein function prediction, but that study does not assume any missing
entry.

The salient technical difficulty in dealing with multiple kernel
matrices is that the data weights are added as new unknown vari-
ables. When the EM algorithm is formulated in a straightforward
manner, the optimization problem of the M-step is not convex, intro-
ducing a local minima problem into a step. We avoid this situation by
adding extra hidden variables and reformulating the EM algorithm.
In our algorithm, the M-step is convex and can be solved efficiently
through one-dimensional line search.

Our method is applied to metabolic network and protein interaction
networks in held-out tests. The accuracy of predicting edges was
better than kernel CCA (KCCA). Furthermore, our method was able
to exclude noisy datasets without losing accuracy.

2 KERNEL MATRIX REPRESENTATION OF
A NETWORK

As mentioned, the network inference problem is a large combin-
atorial problem. Typically, one must minimize a non-convex loss
function (e.g. negative marginal likelihood of a Bayesian network)
over many binary variables. This optimization problem is very diffi-
cult to solve because of numerous local minima. Further more, as a
result of these minima, a reasonable network may not be found when
the initial network is not good enough.

The kernel matrix representation simplifies the problem radic-
ally (Yamanishi et al., 2004). To describe the network with � nodes,
we take an � × � symmetric positive definite kernel matrix Q and a
threshold δ. The kernel matrix is assumed to be normalized, namely
Qii = 1 for any i. We place edges between the node pairs whose
kernel values are >δ. More precisely, the set of edges is described as

E = {(i, j) | Qij ≥ δ, 1 ≤ i < j ≤ �}.
The restriction that the matrix Q is positive definite is helpful for
developing algorithms for network inference because Q can be
regarded as a Gram matrix in a vector space [Yamanishi et al. (2004)]
or a covariance matrix of a Gaussian distribution (Section 3).

Our task is to obtain Q from the training network and multiple
datasets. Let us decompose Q as

Q =
[

KI Qvh

Q�
vh Qhh

]
. (1)

For the first n nodes, KI is determined solely from the training
network using the diffusion kernel (Kondor and Lafferty, 2002).
Let A denote the adjacency matrix of the training network and let
D denote the diagonal matrix of degrees of nodes (i.e. the number
of edges connected to a node). Under those assumptions, the graph
Laplacian matrix L := D − A is normalized so that all the diagonal
elements are one:

Lij ← Lij√
LiiLjj

.

The diffusion kernel is defined as

K = exp(−βL),

where exp is a matrix exponential operation and β is a parameter
to control the degree of diffusion (Fig. 3). Diagonal elements of the
diffusion kernel are not normalized to 1. Therefore, we normalize the
matrix K again and obtain the resulting matrix KI . When elements in
KI larger than a threshold are picked up, the training network, if not
exactly recovered, is approximately recovered. If the network should
be recovered exactly, a constrained version of diffusion kernels can be
used with additional computational cost (Tsuda and Noble, 2004).
However, we do not require the exact recovery here because our
primary objective is to predict the edges involving the extra proteins
(Qvh and Qhh). The closest problem is the estimation of Qvh and
Qhh using multiple kernel matrices P1, . . . , PnK ∈ ��×� derived from
different types of datasets.

3 KERNEL MATRIX COMPLETION FROM
SINGLE DATASET

In this section, we first consider the case in which we have only one
auxiliary matrix P . In the next section, we extend the algorithm to
deal with multiple matrices.
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Fig. 3. The diffusion kernel gives similarities among nodes on an undirected
graph. The 6 × 6 matrix (d) represents the kernel values of the graph with six
nodes (a) using β = 1.0. The values between nodes that are close to each other
are larger, and vice versa. The adjacency matrix is approximately recovered
by selecting elements in the kernel matrix larger than some threshold. For
instance, graph (b) is reconstructed from the kernel matrix with threshold 0.4,
whereas graph (c) is reconstructed with threshold 0.1. In this graph, threshold
0.2 reproduces graph (a) perfectly, but such is generally not the case.

To pose the problem as one of statistical inference, let us con-
sider an �-dimensional random variable comprising two parts x =
(v�, h�)�, v ∈ �n, h ∈ �m, and two Gaussian distributions p(x)

and q(x) defined on x. Distributions p and q correspond to kernel
matrices P and Q, respectively. The mean of p = 0. Therefore,
Ep[x] = 0. The covariance is set to P , i.e. Ep[xx�] = P . The
mean of q is also 0 and the covariance for the first part is known as
Eq [vv�] = KI . Our task is to estimate the covariances involving the
second part h, namely Qvh := Eq [vh�] and Qhh := Eq [hh�].

The relationship between v and h is learnt from p by deriving
conditional distribution p(h|v). Then, the joint distribution of q is
estimated as q̂(v, h) := p(h|v)q(v). Finally, the covariance matrices
are computed from q̂ as follows:

Qvh = KIP
−1
vv Pvh, (2)

Qhh = Phh − P �
vhP

−1
vv Pvh + P �

vhP
−1
vv KIP

−1
vv Pvh (3)

where Pvv , Pvh and Phh denote the partition matrices of P :

P =
[
Pvv Pvh

P �
vh Phh

]
.

The equivalent algorithm has been used successfully in different
contexts by Kin et al. (2004) and Tsuda et al. (2003). To compute
the inverse matrices appearing in Equations (2) and (3) in practice,
P must be regular. When P is singular or close to singular, one has
to regularize P as P ′ = P + σ 2I .

To further clarify this process, it is meaningful to view this
algorithm in terms of information geometry (Amari and Nagaoka,
2000). A central concept in information geometry is Kullback–
Leibler (KL) divergence, which is a distance measure between two

distributions. Distance between two zero mean Gaussian distribu-
tions with covariances P and Q is described as

D[Q, P ] = 1
2 tr(P −1Q) + 1

2 log det P − 1
2 log det Q − 1

2 �.

The covariance matrices (2) and (3) are represented simply as the
optimal solution of the following problem (Tsuda et al., 2003):

min
Qvh ,Qhh

D[Q, P ].

Hence Qvh and Qhh are determined such that Q matches P in terms
of the KL divergence.

4 SELECTIVE INTEGRATION OF
MULTIPLE DATASETS

When nK kinds of datasets are available, one has nK auxiliary kernel
matrices P1, . . . , PnK ∈ R�×�. We take the weighted combination
of these kernel matrices. The combined kernel matrix with weights
b = {b1, . . . , bnK }, ∑nK

k=1 bk = 1, involving a regularization term
described as

P(b) =
nK∑
k=1

bkPk + σ 2I . (4)

The weights bk for matrices are estimated together with missing parts
Qvh and Qhh by minimizing the KL divergence,

min
Qvh ,Qhh ,b

D[Q, P(b)]. (5)

Unfortunately, this optimization problem is not convex, so only local
minima are obtainable. Nevertheless, the local minima obstacle can
be alleviated using the EM algorithm (Dempster et al., 1977). The
aim of the solution method is to minimize the objective function by
alternating solutions of two partial convex problems. For purposes of
illustration, the EM algorithms are applied successfully to learning
with Gaussian mixture models and hidden Markov models. When
we apply the EM algorithm to our problem, we have the following
two steps:

• E-step: Fixing b, minimize D(Q, P) with respect to Qvh and
Qvv and

• M-step: Fixing Q, minimize D(Q, P) with respect to b.

However, one technical problem arising here is that the optimiza-
tion problem of the M-step is not convex. We propose to solve this
problem by adding extra hidden variables and reformulating the EM
algorithm.

The optimization problem posed in the M-step is called struc-
tural covariance matrix estimation. Several methods have been
proposed (Burg et al., 1982). Among them, the most familiar method
would be the one using Malley (1994), which also employs extra
hidden variables in a different manner. Its computational cost is
much higher because it involves inversion of a huge matrix of size
O(�2) × O(�2).

4.1 Extended covariance matrix
We extend the random vector as c = (v�, h�, z�)�, where additional
variables are denoted as z ∈ �nK�, and define a new Gaussian distri-
bution r(c|b) whose mean is zero and covariance is R(b). Instead of
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Equation (5), we solve the following:

min
Qvh ,Qhh ,Qxz ,Qzz ,b

D[Q̃, R(b)], (6)

where Q̃ is the extended version of the covariance Q, i.e.

Q̃ =
[

Q Qxz

Q�
xz Qzz

]
. (7)

We design R(b) such that optimal solutions of Equation (6) for
Qvh, Qhh and b coincide with those of the original problem. Fur-
thermore, in the EM algorithm derived for Equation (6), both E- and
M-steps are convex optimization problems.

The definition of R(b) requires the Cholesky decomposition of
each correlation matrix by Pk = �k�

�
k . Defining

� = [�1, . . . , �nK ] ∈ ��×�nK (8)

and

B = diag{b1, . . . , bnK } ⊗ I�, (9)

we get

P(b) = �B�� + σ 2I�, (10)

where ⊗ denotes the Kronecker product.
We define z as an nK�-dimensional random vector. The extended

Gaussian distribution is defined as r(c|b) = r(x|z)r(z|b), where
r(z|b) ∼ N (0, B) and r(x|z) ∼ N (�z, σ 2I ). Then, one can show
that the covariance matrix of r that is limited to x, Rxx(b), coincides
with P in Equation (10). The optimal solutions of Equation (6) coin-
cide with those of the original problem (see the Supplementary data
for proof ).

4.2 EM algorithm
In M-step, we find optimal b to minimize D[Q̃, R(b)] using fixed
Q̃. Ignoring the terms irrelevant to b, the KL divergence is written
as

D(Q̃, P(b)) = 1
2 tr

(
B−1Qzz

) + 1
2 log det (B) + const. (11)

Defining qk = (1/�)
∑k�

j=(k−1)�+1

[
Qzz

]
jj

, the optimization problem
is rewritten as

min
b

nK∑
k=1

qk

bk

+ log bk ,
nK∑
k=1

bk = 1.

Employing the Lagrange multiplier α, this convex problem is
rewritten as

max
α

min
b

nK∑
k=1

qk

bk

+ log bk + α

(
nK∑
k=1

bk − 1

)
. (12)

The minimization problem inside can be solved as

bk = −1 + √
1 + 4αqk

2α
k = 1, . . . , nK. (13)

Substituting Equation (13) in Equation (12), we obtain a concave
maximization problem with respect to one parameter α, which can

be solved easily by a line search algorithm. Thereby, the optimal b
can be obtained by substituting the optimal α in Equation (13).

In the E-step, we find submatrices of Q̃ to minimize the divergence
using fixed R(b). It is well known that the optimal solutions can be
obtained by conditional expectation (Amari and Nagaoka, 2000). We
estimate the joint distribution as q̃(c) = r(z|x, b)r(h|v, b)q(v), and
then derive its covariance matrix as Q̃. Here, the posterior distribution
of z is written as r(z|x, b) ∼ N (mz, Vz), where

Vz = B − B��(�B�� + σ 2I )−1�B (14)

and

mz = σ−2Vz�
�x.

Estimation of Q, the submatrix for variable x, can be done as Equa-
tions (2) and (3) by simply replacing the submatrices of P with those
of R(b). Thereby, the submatrix Qzz is estimated as

Qzz = Vz + 1

σ 4
Vz�

�Q�Vz. (15)

Calculation of the other submatrices is unnecessary because they are
not used in the M-step. Moreover, only diagonal elements of Qzz are
required in Equation (11), which are computed as

[Qzz]ii = [B]ii − ([B]ii )2l�i
(
P0 + σ 2I

)−1
li + σ−4g�

i Qgi ,

where li ∈ �� is the i-th column vector of �, and gi ∈ �� is the i-th
column vector of matrix G ≡ �Vz given by

G =
nk∑

k=1

bk�k + P0
(
P0 + σ 2I

)−1

(
nK∑
k=1

bk�k

)
,

where P0 = ∑nK
k=1 bk�k�

�
k .

4.3 Computational complexity
The memory complexity of our algorithm is O(�2nK) due to matrices
� and G. In terms of time complexity, the computation in the E-step
is dominant, where the computation of the diagonals of Qzz takes
O(�3nK).

5 EXPERIMENTS
We apply our algorithm to two kinds of protein networks in yeast.
One is a metabolic network produced from the KEGG/PATHWAY
database (Kanehisa et al., 2004). This network, which contains 769
proteins and 3702 undirected edges, is identical to the one used in
Yamanishi et al. (2004). In addition, we used the protein interac-
tion network provided by von Mering et al. (2002). This interaction
network is produced from the results of various biological experi-
ments. Each edge is rated with a confidence level: high, middle or
low. We only used high confidence edges because they are supported
by multiple experiments. By removal of proteins without any edge,
we obtained a network of 984 proteins and 2438 edges.

The edges of the two networks have fundamentally different mean-
ings. In our metabolic network, all proteins are enzymes. An edge
is established if two enzymes catalyze successive reactions in any
metabolic pathway (Yamanishi et al., 2004), whereas the edge in the
interaction network indicates the physical interaction of two proteins.
Actually, the two networks are quite different: they have 188 proteins
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in common, and there are 311 and 159 edges among these proteins
in metabolic and interaction networks, respectively. Nevertheless,
the number of common edges is only 41. Given the same auxiliary
data, no unsupervised method can perform well for both networks,
though such a method might be good for one of them. One aim of this
experiment is to show how well our supervised method is adaptable
to different kinds of networks.

Another point is to investigate the ability of selecting informative
data. Here we employed the following four datasets: gene expression
(exp), protein interaction data derived from yeast two hybrid (y2h)
experiments only, protein localization (loc) and phylogenetic profiles
(phy) (Supplementary data). Since it is not inherently clear which one
is informative for network prediction, we included several decoy
data generated from 10-dimensional Gaussian white noise (rnd) to
be excluded as irrelevant data. The range of this artificial noise does
not affect prediction results since all kernel matrices are normalized.

Gene expression data have 157D vectors [77 experiments in
Spellman et al. (1998) and 80 experiments in Eisen et al. (1998)].
They are transformed into an RBF kernel matrix with radius 5. The
yeast two-hybrid network is a summation of two assays provided
from Ito et al. (2001) and Uetz et al. (2000); its diffusion kernel
is computed with β = 1. The localization data (Huh et al., 2003)
are 23D vectors with binary values. Each value indicates whether
or not the protein is at the corresponding location. Similarly, phy
derived from the KEGG database gives 145D binary vectors. The
linear kernel is used for both data.

We are also interested in comparing the performance of our
algorithm with KCCA (Yamanishi et al., 2004). The KCCA con-
structs the kernel matrix Q through greedy extraction of relatively
low-dimensional features from the training network and auxiliary
data. Their method can solve the same problem, but it does not have
a mechanism to select kernel matrices. It might be possible to extend
the KCCA to allow kernel selection, but it is beyond the scope of
this paper.

Accuracy of edge prediction is measured by a 10-fold cross-
validation. The proteins are divided randomly into 10 subgroups.
In each iteration, one subgroup is taken as extra proteins; the net-
work that is restricted to the remaining nine subgroups is used as the
training network. After applying the EM algorithm, the estimated
entries Qvh and Qhh are used as scores for predicting edges. The
predicted edges at different thresholds are compared with the true
edges of the subgroup. We employ two measures to summarize the
performance: the sensitivity at 95% specificity and the receiver oper-
ating characteristic (ROC) score. Sensitivity is defined as the ratio of
true positive edges that are correctly identified whereas specificity
is the ratio of true negative edges that are correctly identified. The
ROC score is the area under the ROC curve, which plots the ratio
of true positives against the ratio of false positives for different pos-
sible thresholds (Gribskov and Robinson, 1996). We repeat the same
procedure for all 10 subgroups and report averaged scores.

For computing diffusion kernels, we set β = 1.0 for the meta-
bolic network and β = 3.0 for the protein interaction network. If we
pick up elements in the diffusion kernel matrices KI larger than a
threshold, the training networks (Fig. 1) are recovered almost per-
fectly: at 95% specificity, the sensitivity is 99.29% for the metabolic
network and 100% for the protein interaction network. Since we
included four decoy data, the number of kernel matrices was eight
and the EM algorithm always started from equal weighting (0.125
for all matrices). The regularization parameter is fixed as σ 2 = 0.1.

Experimental results are shown in Figure 4. The corresponding
numerical scores are listed in Tables 1 and 2. The ROC scores are as
high as 0.827 and 0.929 for the metabolic and interaction networks,
respectively, indicating that our EM algorithm can adapt well to dif-
ferent kinds of networks by learning from the training networks. As a
reference, we also evaluated the weighted sum of auxiliary matrices
(Pvv and Pvh) as scores for edge prediction, but the prediction accur-
acy was much lower than by our method. This result suggests the
difficulty of inferring networks in unsupervised settings. We have
also shown scores for individual auxiliary data. In the metabolic net-
work, the data combination did not help boost accuracy to a great
extent, but a substantial gain was shown in the protein interaction
network.

Regarding data selection, our algorithm successfully excluded the
four decoy data. Furthermore, the yeast-two-hybrid data (‘y2h’) got
a very small weightage in the metabolic network. The result seems
correct because the accuracy of edge prediction using only this data
was very poor.

However, assigned weights do not always reflect prediction per-
formance of individual dataset. It is sometimes true that a dataset,
which performs poorly when alone, has important complementary
information, which is not found in the other datasets. Such a dataset
should have a large weightage in principle. Therefore, one cannot
easily conclude that a dataset is needless even if it has a relatively
low ROC score when used alone. In fact, in the metabolic network,
the weight for loc is larger than exp, though exp is better in terms of
individual performance.

5.1 Robustness
In the experiments with four decoy datasets, no significant perform-
ance changes are found between weighted and uniform combination.
For illustrating the advantage of our algorithm clearly, we show the
case where more decoy datasets are used. We plotted the sensitivity
scores of our EM algorithm against the number of decoy datasets
(Fig. 5). The score decreases as the number of decoys increases.
Without kernel selection, however, a considerably poor performance
is observed.

5.2 Comparison with KCCA
We have also reported the results of KCCA. Since KCCA can-
not determine weights by itself, we used weights obtained by our
algorithm. For the metabolic network, the parameters of KCCA are
set according to Yamanishi et al. (2004): the number of features is
d = 40 and both regularization parameters are λ1 = λ2 = 0.1,
where λ1 is the regularization parameter for the training network and
λ2 is the one for auxiliary data. We performed a three-dimensional
grid search to determine the best parameter values for the protein
interaction network. To be precise, the parameters are tuned such
that the sensitivity score is maximized for the unweighted combin-
ation of four kernels, exp, y2h, loc and phy. Consequently, the best
parameter values were d = 150, λ1 = 1.0 and λ2 = 0.01. For
both networks and all weight settings, scores of KCCA were slightly
worse than those obtained by our method but the difference was not
enormous. This result shows that the performance of our algorithm
is at a competitive level.

5.3 Train–extra edges and extra–extra edges
The edges to be predicted can be classified into two categor-
ies, namely those between the training network and extra proteins
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Fig. 4. Accuracy of network prediction for (a) metabolic and (b) protein interaction networks. Three plots are shown for each network. The top plots illustrate
the sensitivity of different prediction algorithms at 95% specificity. The middle plots restate the same results using ROC scores (i.e. the area under ROC curves).
Results obtained using our algorithm are shown as blue bars (‘Q’) in the leftmost column (‘EM’). Green bars (‘P’) show the accuracy based on the matrix P

(see the text). Red bars show the results of KCCA using the weights determined by our algorithm. The other columns correspond to results when the weights are
prefixed. In column Ave, all kernel matrices are mixed with the same weight. Results using each individual kernel matrix are also shown in columns exp,y2h,loc
and phy. Weights that are obtained automatically are shown in the EM column in the bottom plots, while other columns show prefixed weights.

Table 1. Prediction accuracy for the metabolic network

Weight Sensitivity ROC score
exp y2h loc phy rnd1 rnd2 rnd3 rnd4 Q P KCCA Q P KCCA

0.168 0.065 0.292 0.421 0.014 0.014 0.013 0.014 0.430 0.125 0.370 0.816 0.616 0.782
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.413 0.099 0.255 0.813 0.576 0.728
0.168 0.063 0.328 0.441 0 0 0 0 0.436 0.126 0.392 0.827 0.615 0.792
0.250 0.250 0.250 0.250 0 0 0 0 0.425 0.119 0.422 0.828 0.609 0.800
1 0 0 0 0 0 0 0 0.245 0.070 0.221 0.746 0.522 0.695
0 1 0 0 0 0 0 0 0.132 0.059 0.119 0.569 0.512 0.564
0 0 1 0 0 0 0 0 0.170 0.077 0.057 0.656 0.566 0.604
0 0 0 1 0 0 0 0 0.444 0.113 0.247 0.817 0.606 0.687

The first row shows the weights of kernel matrices determined by the EM algorithm, along with the corresponding sensitivity scores and ROC scores. The other rows show results
obtained when the weights are prefixed.

Table 2. Prediction accuracy for the protein interaction network

Weight Sensitivity ROC score
exp y2h loc phy rnd1 rnd2 rnd3 rnd4 Q P KCCA Q P KCCA

0.264 0.192 0.213 0.289 0.011 0.010 0.011 0.011 0.777 0.288 0.711 0.929 0.754 0.899
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.762 0.159 0.675 0.921 0.648 0.885
0.279 0.198 0.219 0.304 0 0 0 0 0.796 0.288 0.737 0.939 0.756 0.911
0.250 0.250 0.250 0.250 0 0 0 0 0.796 0.296 0.742 0.940 0.758 0.913
1 0 0 0 0 0 0 0 0.437 0.156 0.366 0.776 0.694 0.740
0 1 0 0 0 0 0 0 0.403 0.176 0.245 0.612 0.495 0.584
0 0 1 0 0 0 0 0 0.454 0.189 0.344 0.788 0.667 0.766
0 0 0 1 0 0 0 0 0.352 0.179 0.289 0.767 0.648 0.733
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Fig. 5. Accuracy of network prediction for (a) metabolic and (b) protein interaction networks against the number of decoy kernel matrices. Our algorithm
(EM) is superior to the simple kernel average (Ave) because it can automatically exclude decoy kernel matrices.

Table 3. Prediction performance of train–extra edges and extra–extra edges

Sensitivity ROC score
Q P KCCA Q P KCCA

Metabolic network
All 0.430 0.125 0.370 0.816 0.616 0.782
Train–extra 0.442 0.127 0.382 0.821 0.617 0.789
Extra–extra 0.225 0.102 0.165 0.693 0.599 0.651

Protein interaction network
All 0.777 0.288 0.711 0.929 0.754 0.899
Train–extra 0.787 0.286 0.719 0.934 0.755 0.903
Extra–extra 0.623 0.314 0.533 0.858 0.749 0.840

‘Train–extra’ denotes edges between the training network and extra proteins correspond-
ing to Qvh. Extra–extra denotes edges among extra proteins corresponding to Qhh. All
shows the average over all edges.

(train–extra edges) and those among extra proteins (extra–extra
edges), which corresponds to the submatrices Qvh and Qhh, respect-
ively. We investigated the prediction performance separately for each
category (Table 3), and found that the extra–extra edges are much
harder to predict.

5.4 Remarks on yeast two-hybrid network
The yeast two-hybrid network is considered as an important inform-
ation source for predicting the ground truth protein interaction
network, because they share a large overlap. Actually, the two-hybrid
network is a subgraph of the ground truth network: all the 1112 edges
in the two-hybrid network are included in the ground truth network
having 2438 edges. However, the experimental result did not agree
with this consideration, namely the two-hybrid network performed
poorly (ROC score 0.612), and the weight assigned by our algorithm
was the smallest among the four data.

This result reflects the difficulty in predicting new edges only from
known edges in the subgraph. In the experiment, the diffusion kernel
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Fig. 6. ROC curves for the protein interaction network using only the y2h
network.

made from the two-hybrid network was very informative for pre-
dicting its own edges, but almost useless for predicting new edges.
Figure 6 shows the complete ROC curve of our algorithm using the
two-hybrid network only. The ROC curve rises very sharply when
the false positive rate is low. It means that the high confidence predic-
tions, corresponding to known edges, are mostly accurate. However,
the curve becomes almost flat around 20% false positive rate due to
poor prediction of new edges. As a result, the ROC score (i.e. the
area under the curve) turned out to be smaller than those from the
other types of data.

6 DISCUSSION AND CONCLUSION
This paper presents a novel method for network inference with auto-
matic data selection. We adopted the kernel matrix representation of
networks, which is rather simple compared with a Bayesian network
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characterizing conditional independent relationships. The advantage
of taking a simpler framework is that the learning problem becomes
much simpler. Moreover, it is easier to incorporate additional vari-
ables to allow data selection. Such data selection techniques are
crucial, as more and more biological observations become available.

High ROC scores in our cross-validation experiments imply that
the training network is very informative for predicting edges outside
the network. This would not occur if the network were generated
randomly. In fact, protein networks have the small world property and
contain many small cliques (Goldberg and Roth, 2003). Our method
seems to benefit from the small world property, but the underlying
mechanism of that benefit remains unclear.

In our algorithm, we assumed that the subnetwork is perfectly
known for the first n nodes. However, one can also consider a more
general situation where a set of known edges are distributed on the
whole network. In this case, Q does not have a block structure
like Equation (1), but the elements of Q corresponding to known
edges are individually constrained. The minimization of D[Q, P ]
with respect to Q is still a convex problem but the solution cannot be
given in closed form. However, the problem can be solved iteratively,
for example, by applying the coordinate descent algorithm to its dual
problem (Speed and Kiiveri, 1986).

We have described our method as a network prediction method,
but it can also be used in combination with support vector machines,
e.g. for protein function prediction (Tsuda and Noble, 2004). The-
oretically, our method is somewhat related to Gaussian process
classifiers (Williams and Barber, 1998) because they regard the ker-
nel matrix as a covariance matrix of a Gaussian distribution. It would
also be interesting to combine our method with the Gaussian process
to make a fully integrated Bayesian classifier.
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